A combination of bitter gourd ethanolic extract with ant lion larvae aqueous extract for a blood glucose-lowering agent

Muhammad Zahrul Mujahid, Dany Dwi Agistia, Miftahus Sa’adah and *Agung Endro Nugroho

Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Jogjakarta 55281, Indonesia

Abstract

Many herbs have been developed as functional foods, drugs and supplements for lowering blood glucose in diabetic patients. Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycemia and distinctive complications. Traditionally, both bitter gourd (*Momordica charantia* L.) and ant lion (*Myrmeleon* sp.) larvae were consumed by some people for treating DM. In the study, a combination of bitter gourd and ant lion larvae was evaluated for its antidiabetic effect in insulin resistance rats, a model of type 2 DM. In the study, insulin resistance condition in rat was induced by intraperitonial injections of human long acting insulin 0.5 IU/kgBW three times daily for 15 days. A single treatment was per orally administered in the rats at the day 16. Blood glucose levels before and one hour after drug administration were determined and compared using pair-sample t test. The combination of bitter gourd and ant lion larvae (75:25 w/w percentage) exhibited hypoglycaemic effect by 32.20 ±2.57%. Metformin, an antidiabetic agent with extrapancreatic action, decreased the blood glucose level by 39.29 ±2.96%. The result indicated that the combination of bitter gourd and ant lion larvae is potential to be developed as a blood glucose-lowering agent for diabetic patients.

Keywords

Diabetes mellitus
insulin resistance
bitter gourd
ant lion larvae

Introduction

Diabetes mellitus (DM) is a group of diverse metabolic disorders characterized by hyperglycemia and distinctive complications (Leu and Zonszein, 2010). The disease is also characterized by absolute insulin deficiency or decreased insulin sensitivity. Subsequently, it results in a glucose uptake deficiency by insulin-sensitive tissue (Neal, 2002). Other symptoms that may appear are premature atherosclerotic cardiovascular disease and small vessel disease manifested such as: retinopathy with potential loss of vision; nephropathy leading to renal failure; and peripheral neuropathy with a high risk of foot ulcers and amputations (Leu and Zonszein, 2010). Diabetes mellitus is spread widely, not only in developed country, but also in developing country (Hossain et al., 2007). Modern lifestyle with high-fat diet increases risk factor for type-2 DM (Koh-Banerjee et al., 1997; Rang et al., 2003).

In developing countries, increasing number of diabetic patients related to insulin resistance (type 2 DM) is very high. Developing countries are undergoing rapid shift in nutrition consumption along with increasing obesity, metabolic syndrome and type 2 diabetes mellitus. Nutrient consumption patterns have been shifted from a healthy traditional high-fiber, low-fat, low-calorie diet toward increasing consumption of calorie-dense foods containing refined carbohydrates, fats, red meats, and low fiber (Misra et al., 2010). Insulin resistance is clinical condition of insulin-decreasing potency to increase glucose uptake into body cells. It is related to obesity and decreased physical activity, and long term consumption of high calorie (Rang et al., 2003; Meier, 2004). Insulin resistance is also defined as a subnormal biologic response to a given concentration of insulin (Fonseca and John-Kalarickal, 2010). It is the early and main character of type-2 diabetes (Sear et al., 2009).

Bitter gourd (*Momordica charantia* L.) is slim vines and cultured in tropical region for its edible fruit. Its leaf decoction is used for constipation, treating liver degeneration, and expel intestine worms in Indonesia. The plant was also reported to possess antioxidant activity (Aminah and Anna, 2011). In addition, the fruit flesh is used for treating diabetes in Malaysia (Islam et al., 2011). The main constituents of bitter gourd possessing hypoglycemic effect are charantin, p-insulin (insulin-like polypeptide), cucurbutanoid, momordinicin, and oleanolic acid.

*Corresponding author.
Email: agungendronugroho@yahoo.com/
nugroho_ae@ugm.ac.id
Harinantenaina *et al*., 2006; Bano *et al*., 2011). The pharmacological properties of \(\pi \)-insulin are similar to these of insulin (Singh *et al*., 2011).

Ant lion (*Myrmeleon* sp.) larvae contains a substance exhibiting an inhibitory property in \(\alpha \)-glucosidase activity. The substance also exhibited an inhibitory effect on carbohydrate catabolism for its antidiabetic activity (Sutanto, 2008). In the previous study, ant lion larvae juice decreased the glucose level in rats significantly (Kurniasih *et al*., 2006).

Based on the facts, both extracts were already reported for their hypoglycemic activity both scientifically and empirically. Action mechanism of hypoglycemic activity of both extracts is suggested to be different. The novelty of the study was to study the hypoglycemic activity of combination of bitter gourd and ants lion larvae in insulin-induced type 2 DM, a model of type 2 DM rats with insulin resistance.

Materials and Methods

Materials

Bitter gourds were collected from the area around Sleman, Jogjakarta Indonesia, and identified by a botanist at Laboratory of Plant Taxonomy, Faculty of Biology Universitas Gadjah Mada Indonesia. The fruit flesh was chopped, dried, and ground. The fruit flesh powder then macerated in ethanol 96% (one liter per day) for three days extraction. Subsequently, it was filtered and concentrated to yield an ethanolic extract, and then diluted in distilled water for being administered in the rats. Ant lion larvae was collected from the area around Bantul, Jogjakarta Indonesia, and identified in at Laboratory of Animal Taxonomy, Faculty of Biology Universitas Gadjah Mada Indonesia. It was ground and suspended in distilled water for being administered in the rats. Basic doses of bitter gourd and ant lion larvae were 60 mg/200 g BW and 50 mg/200 g BW, respectively. In the study, they were combined with ratio of 50:50; 75:25 and 25:75 w/w percentage, orally.

Animals

Wistar rats weighing 100-150 g were obtained from Laboratory of Pharmacology and Toxicology, Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia. The animal handling protocols of this study were in accordance with the guidelines of the animal care of the Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia.

Experimental design

Type 2 diabetic condition in the rat was induced by an intraperitoneal injection of human long acting insulin (*Monotard® HM*) at 0.5 IU/kg BW three times daily for 15 days (Chi *et al*., 2000). After fasting for 8 h, at day 16 the blood glucose level was measured by GOD-PAP Reagent Kit. The diabetic rats were divided into six groups consisting of three-five rats each as follows:

- **Group 1** – the rats received oral saline 10 ml/kg BW (control group).
- **Group 2** – the rats received a single dose of the combination of bitter gourd (60 mg/200 g BW) and ant lion larvae (50 mg/200 g BW) with a ratio of 50:50 w/w percentage, orally.
- **Group 3** – the rats received a single dose of the combination of bitter gourd (60 mg/200 g BW) and ant lion larvae (50 mg/200 g BW) with a ratio of 75:25 w/w percentage, orally.
- **Group 4** – the rats received a single dose of the combination of bitter gourd (60 mg/200 g BW) and ant lion larvae (50 mg/200 g BW) with a ratio of 25:75 w/w percentage, orally.
- **Group 5** – the rats received metformin dose 9,05 mg/ kg BW, orally.

The combination of bitter gourd and ant lion larvae, metformin or glibenclamide were per orally administered at the day 16. One hour after administration, the the blood samples were collected from retro-orbital plexus, and centrifuged at 1,000 rpm for 10 min. Serum was removed for determination of glucose by GOD-PAP Reagent Kit (DiaSys).

Statistical analysis

The results were expressed as mean±SEM. The data were subjected to the one-way analysis of variance (ANOVA) followed by the least significant difference (LSD) test to compare more than two groups. While the unpaired or paired \(t \) test was used to compare the mean of two groups. \(P \)-values of less than 0.05 were considered significant.

Results and Discussion

To induce type 2 DM in rats, insulin was administered for 15 days. Reportedly, long term administration of insulin in normal rats induced hyperinsulinemia, and then induced insulin resistance DM (a type 2 DM). At the day 16, the blood of normal rats and diabetic rats were collected, and the blood glucose levels were measured. The blood glucose
levels of normal rats and diabetic rats were shown in Figure 1a. The blood glucose levels of insulin-induced type 2 diabetic rats (96.17±3.19 mg/dL) were higher than those of normal rats (86.68±3.29 mg/dL) significantly (P<0.05). In the study, glibenclamide, an sulfonylurea antidiabetic drug, was used to confirm an insulin resistance condition in the rats. In Figure 1b, glibenclamide (0.091 mg/kgBW) markedly suppressed the blood glucose levels with hypoglycemic activity of 49.86±3.75%. In contrast, hypoglycemic activity of glibenclamide in insulin resistance rats was only 25.05±5.89%. It facts indicate that hypoglycaemic activity of glibenclamide has been reduced when administered in insulin resistance rats. The result showed that intraperitoneal injection of human long acting insulin three times daily for 15 day induces insulin resistance in rats.

In the study, all treatment could decrease the blood glucose levels in diabetic rats in comparison to this of the control group value. The combination of bitter gourd (60 mg/200 g BW) and ant lion larvae (50 mg/200 g BW) with a ratio of at the ratio of 50:50; 75:25 and 25:75 w/w percentages decreased the blood glucose levels significantly. Metformin, an biguanid antidiabetic drug, suppress the blood glucose levels by 39.29±2.96%. The hypoglycemic activity of combination of bitter gourd extract and ant lion extract with a ratio of at the ratio of 50:50; 75:25 and 25:75 w/w percentages were 15.69±5.51%; 32.20±2.57% and 20.38±1.87%. The results were shown in Figure 2.

In the study, all treatment could decrease the blood glucose levels in diabetic rats in comparison to this of the control group value. The combination of bitter gourd (60 mg/200 g BW) and ant lion larvae (50 mg/200 g BW) with a ratio of at the ratio of 50:50; 75:25 and 25:75 w/w percentages decreased the blood glucose levels significantly. Metformin, an biguanid antidiabetic drug, suppress the blood glucose levels by 39.29±2.96%. The hypoglycemic activity of combination of bitter gourd extract and ant lion extract with a ratio of at the ratio of 50:50; 75:25 and 25:75 w/w percentages were 15.69±5.51%; 32.20±2.57% and 20.38±1.87%. The results were shown in Figure 2.

Insulin resistance is a condition in which the tissues exhibit lower normal response for same level of blood insulin concentration (Fonseca and John-Kalarickal, 2010). For the therapy of insulin resistance, metformin is used to increase insulin sensitivity (Herzlinger and Abrahamson, 2010). However, glibenclamide is less suitable for treating

![Figure 1. Blood glucose levels in normal rats and insulin-induced diabetic rats (a); and hypoglycemic action of glibenclamide (0.091 mg/kgBW) in normal rats and insulin-induced diabetic rats. Data represent mean ± SEM, and are three-four independent experiments. *P < 0.05 compared to the control value (normal rats).](image1)

![Figure 2. Hypoglycemic activity of combination of bitter gourd extract and ant lion extract; and metformin (positive control) in insulin resistance rats. Data represent mean ± SEM, and are three-four independent experiments. *P < 0.05 compared to the control value (normal rats).](image2)

<table>
<thead>
<tr>
<th>No.</th>
<th>Part of the plant</th>
<th>Extract</th>
<th>Hypoglycemic activity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>fruit pulp.</td>
<td>saponin-free methanol extract of pulp juice.</td>
<td>hypoglycemic effect in type 2 diabetic rats.</td>
<td>Ali et al., 1993</td>
</tr>
<tr>
<td>2.</td>
<td>seed and whole plant.</td>
<td>methanol extract of seed, and of whole plant.</td>
<td>no hypoglycaemic effect in type 1 diabetic rats.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>fruit.</td>
<td>water extract</td>
<td>decreasing effect on blood glucose and increasing effect on insulin in type 2 diabetic rats with hyperinsulinaemia, increasing effect on GLUT4 protein.</td>
<td>Miura et al., 2001</td>
</tr>
<tr>
<td>4.</td>
<td>whole-plant.</td>
<td>aqueous extract</td>
<td>hypoglycaemia in normal rats and STZ-treated diabetic rats.</td>
<td>Ogwokwe et al., 2006</td>
</tr>
<tr>
<td>5.</td>
<td>fruit pulp.</td>
<td>ethanolic extract</td>
<td>Improvement of fasting blood glucose, serum insulin and β-cell function in neonatal streptozotocin-induced type 2 diabetic rats</td>
<td>Hafizur et al., 2011</td>
</tr>
<tr>
<td>6.</td>
<td>fruit.</td>
<td>aqueous extract</td>
<td>alleviate pancreatic damage and increase the number of β-cells in neonatal STZ-induced type-II diabetic rats</td>
<td>Abdollahi et al., 2011</td>
</tr>
<tr>
<td>7.</td>
<td>whole fruit.</td>
<td>acetone extract</td>
<td>Regeneration of beta cells in islets of Langerhans of pancreas of alloxan diabetic rats</td>
<td>Singh and Gupta, 2007</td>
</tr>
</tbody>
</table>
insulin resistance than metformin due to its pancreatic action of glibenclamide. In the study, metformin is used in control positive group. The administration of metformin succeeded to decrease the blood glucose levels in type 2 DM rats (insulin resistance). However, administration of glibenclamide is less success than this of metformin.

To date, ant lion (Myrmeleon sp.) larvae is still being further investigated associated with its antidiabetic activity. In Indonesia, ant lion larvae is empirically reported to possess antidiabetic activity, and widely used as a traditional medicine. Its scientific data associated with its antidiabetic activity is very limited. In line with empirical data, ant lion larvae juice was reported to decrease the glucose level in rats potently (Kurniasih et al., 2006). Lion ants (Myrmeleon sp.) contains a substance exhibiting an inhibitory property in α-glucosidase activity. The substance also exhibited an inhibitory effect on carbohydrate catabolism for its antidiabetic activity (Sutanto, 2008). In the other side, Bitter gourd contains several hypoglycaemic compounds such as charantin, cucurbutanoid, momordicin, and oleanolic acid (Harinantenaina et al., 2006). Reportedly, they showed potent hypoglycaemic effects in type 2 DM rats with different actions (Table 1). However, Ali et al. (1993) reported that the pulp juice of bitter gourd did not influence the blood glucose level in type 1 DM rats. In therapy of diabetes mellitus, drug combination therapy is sometimes needed in order to decrease the side effects or synergistic effects. In the study, bitter gourd was combined with ant lion larvae to provide a potent natural product combination. The combination at at the ratio of 75:25 w/w percentage exhibited most potent hypoglycaemic activity among the others in type 2 DM rats with insulin resistance. This combination is potential to develop as a blood glucose lowering agent in diabetic subjects associated with insulin resistance.

Conclusion

We concluded that the combination of bitter gourd (60 mg/200 g BW) and lion ants (60 mg/200 g BW) at the ratio of 75:20 w/w percentage decreased potently the blood glucose levels in insulin-induced type 2 diabetic rats. The hypoglycemic activity of this combination was $32.20 \pm 2.57\%$.

Acknowledgements

We gratefully thank to DP2M DIKTI (Directorate of Higher Education) Ministry of Education, Indonesia through “Program Kreativitas Mahasiswa” Research Grant 2011 for financial support in the study. We would also like to thank Mr. Fajar Setyo Wibowo for assistance in the study.

References

